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A systematic localized approximation scheme for the 
coupled-cluster treatment of quantum spin systems 

R F Bishop, J B Parkinson and Yang Xian 
Department of Mathematics, U M l S T ,  PO Box 88, Manchester M60 IQD, UK 

Received 2h Feblualy 1992 

AbstrncL Wuthin the framework of the mupled-cluster method a systematic localiied ap- 
proximation sheme, the scollled LsuB11 scheme, is developed and applied to anisotropic 
quantum Spin chains. We use computer generation of the terms in the mupled non-linear 
equations to obtain successive approximations up to order 91 = 8. The mults for the 
ground-state energy show systematic and rapid convergence in lhe king-like region. The 
method also gives good results in the planar region where penurbation theory is not 
valid, and only breaks down for Vdlues of the anisovopy parameter A 5 -0.5. We show 
that for a given value of n the WBn scheme reproduces exactly the mrrespondmg nth 
order of 1arge.A perturbation theory around the lsing Limit. 

I. Introduction 

Although the coupledsluster method (CCM) is firmly established as one of the most 
powerful methods of quantum many-body theory (see Bishop and Kummel(l987) and 
Bishop (1991) for introductory reviews), it is only recently that it has been applied 
to quantum spin systems. This was first done by Roger and Hetherington (1990) 
and then developed in earlier papers by the present authors (Bishop et a1 1991a, b, 
henceforth referred to as I and I1 respectively). In these papers the potential of the 
CCM as applied to antiferromagnetic quantum spin systems was demonstrated. We 
introduced a variety of approximation schemes and showed that even in rather low 
orders these were capable of obtaining very encouraging results when compared with 
known exact results for s = $ quantum spin chains. The Hamiltonian considered was 
the XXZ or anisotropic Heisenberg model: 

‘H = $CC[Asi.sf+, + s;s?+, + s:s:+,] (1) 
I P  

where the sum over I is Over all N atoms with periodic boundaly conditions, and the 
sum over p is over nearest neighbours. This model in one dimension is integrable 
using the Bethe unsnrz (Bethe 1931, Orbach 1958, Yang and Yang 1966a, b). We 
calculated the ground-state energy per spin, the sublattice magnetization, the spin- 
spin correlation function and the excited-state energies as functions of A. 

Of course, the CCM is applicable to non-integrable systems just as easily as to 
integrable ones and in the above references we also investigated ZD systems described 
by (1). Furthermore, we have recently obtained results for the similar 1~ system with 
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s 2 1 (Bishop ef al 19!32), which is also non-integrable. However, in order for our 
results to be useful in practice we need to have some measure of the limitations of 
any particular approximation scheme, and to confirm that successive terms in such 
a scheme do indeed converge over some range of the parameters. Fbr this reason 
we present results in this paper in which one particular scheme, the U U B n  scheme, 
k taken to higher order. Again, for comparison with exact results, we consider the 
ID s = Bethe unsulz integrable Hamiltonian of (1). We shall concentrate on the 
ground-state energy per spin for this system. 

R F Bishop et a1 

2. The L S U B ~  approximation 

The starting point of the CCM is the choice of an uncorrelated model or reference 
state I@) which we shall take as the usual two-suhlattice N b l  state. Following Roger 
and Hetherington, for ease of later description we perform a notional rotation of 
l8Oo on one sublattice so that the model state may be referred m as having all spins 
pointing down. 

We shall work with Pauli spin operators up, related to the spin angular momentum 
operators in the usual way: up = Zsp, a = c,y,z. Defining raising and lowering 
operators OF = i(mf+iu:) for index i on the ‘down’sublattice and uj” = $(-a;* 
io:) for index j on the ‘up’ sublattice, then U ; [ @ )  = 0 for index 1 on either 
sublattice, while U T I @ )  is a state with the lth spin reversed with respect to the modcl 
state (and see I1 for further details). The Hamiltonian of (1) becomes 

7l = - c[(A/4)u;uf+l  + + u;ol+l)l. (2) 
1 

In the ccM the true ground state is witten as 

IQ) = eSpP). (3) 

The CCM correlation operator S is constructed entirely out of creation operators 
with respect to the model state, i.e. out of a sum of terms containing all possible 
combinations of the {U: }  creation operators consistent with the conserved quantities. 
For the ground state of (1) we require that 

Any particular approximation consists of selecting a subset of these terms. 
The particular choice known as the L S U B ~  scheme, first described in 1, includes 

all possible terms that involve creation operators acting wholly within a ‘locale’ of n 
adjacent sites. In each term there must be an equal number of spin Rips with respect 
to the model state on each sublattice since s+ is a conserved quantum number, as 
noted above. We therefore h t e  for S within this scheme 

a12 

s = C S Z k  (4) 
k=L 
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where 

S2, =(k!)-’ (5) t t t  
sj,i *... i k ; j l j  *... j*alfai:.. .ai*ajjl(JjZ...a:*. 

dl subscripts 

In this expression the indices {in} run Over all sites on one of the two sublattices, 
while the indices {jn} refer to the opposite sublattice. The cluster configuration 
coefficients 

are defined to be invariant with respect to permutations of the indices {in; n = 
1,2,. . . , k) amongst themselves and of the indices {j,; n = 1, 2, .  . . , k} amongst 
themselves. The configuration coefficients also share the various symmetries of the 
lattice, ie., in ID, both translational and reflection symmetry. Thus, for example, for 
the mmpact four-spin cluster, we have 

s i , i ta; i+ l , i+3  = si+Z,i; i t l . i t3  = si,<+Z;i-l,i+l etc. 

Because of the translational symmetry the coefficients in the sums are independent 
of i,. Choosing i, = 0 we introduce a simplified notation: 

f o a p 7 6 . . . w  s i x i ~ , . . i ~ ; j s j g . . . j ~  

where the 2k - 1 indices a < p < y < 6 < . . . < w are the ordered set of 
differences (i2 - i,), (i3 - i l ) ,  . . . , (il - i,), (j, - i,), . . . ,(jk - i,). For consistency 
with the notation of previous papers we also use 6, fan, and 9, f01234...n--1 for 
the configuration in which all the spins in a block of n adjacent sites are flipped. With 
this notation the various independent terms included in the LSUBn approximation for 
2 4 n < 8 are as follows: 
LSUBZ: 6, - 
LsuB3: 6, 
LSUW: 61, 4, 9 4  

LSUE: h, 639 94, f0134 

uuB6: LsuBs PIUS 6 5 ,  folzs, f0235,  f0145,  96 
UUB7: LSUBh PIUS f013Sr f0156r f012356 

ISuB7 Pius ‘73 f0127, f0147, f0167r f0237, fOZ57; f0347, f012347, f012367, fOl24579 

f012567, f0134677 f023457. gd’ 
These terms are displayed diagrammatically in figure 1. NI coefficients that are 

not explicitly included at a-ny given level of approximation are taken to be zero, ex- 
cept that use has been made of the fact that terms that are identical under reflection 
symmetry are equal, and hence only one term of each such pair needs to be con- 
sidered explicitly. Thus, for example, fo345 E foIz5 k also retained in the LSUBn 
approximation with n > 5. 

Note that there is no LSUBI approximation as there must always be an even 
number of creation operators in each term of S, and for similar reasons the LSUB3 
approximation is identical to LSUBZ. Also, for small values of n, more terms are 
added as n is increased by unity from odd values of n than from even values of n. 
This combinatorial effect is due to the fact that for odd values of n the locale does 
not’include equal numbers of sites on each sublattice. 
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- f a w n  - 90 

Figure L The 26 independent configurations required for [he Isma appmximation. Each 
MIS (x) indicales a Sile [hat is Ripped relalive lo lhe Nbel slate; while a dot (.) indicates 
an unRipped site. All sites not explicitly shown are unflipped. Each configuration may 
appear at any psilion along the chain. Nole lhat lor the asymmetlie contiguralions we 
also relain their (identical) reflection-q”ely munlerpans. 

By taking the translational and reflection symmetry into account explicitly, it is 
passible to show that the number N ,  of independent configuration coefficients that 
need to be retained at the LSUBn level of approximation is given by 

where [ p ]  denotes the integer part of the number p ,  and (T) is the usual combina- 
torial factor, 

m! (:) = n! ( tn -n ) ! .  

It is clear from the form of the Hamiltonian that an L S U B ~  sequence in which 
only even values of n are considered is in some ways more natural than the more 
general sequence which includes all values of n. The numerical results presented in 
section 3 reflect this. 

Starting with the Schrodinger equation 

XI*’) = q w  (7) 

the ground-state energy, Eg, is obtained by operating on the left with (al. For all 
approximation schemes this yields 

E,/N = -$(A + 20,) (8) 

reflecting the nearest-neighbour interaction form of X. Indeed, equation (S) isSan 
eracl equation in terms of, the compact two-spin-flip configuration coefficient b, .  
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Furthermore, a set of coupled non-linear equations for the cluster configuration coef- 
ficients is obtained by operating on the left of the Schrodinger equation with (@IC,, 
where C, is the Hermitian conjugate of one of the strings of creation operators 
(combinations of U:) present in S. 

The simplest approximation, LSUBZ, retains only the single term with coefficient 
b,, and leads to a single non-linear equation 

- 1 + 2Ab, + 3b: = 0 (9) 

and hence 

E,/N = -[A + 2(A2 + 3)'"]/12. (10) 

At A = 1, for example, this gives E, /N  = -5/12 = -0.4167, compared with the 
exact result -0.4432. 

In the LsUB4 approximation the three coupled equations are 

- 1 + 2Abl - 29, + 3bt - 2b1b3 - 2b: = 0 (W 

4Ab3 - g4 - bi + 4blb3 = 0 (1lb) 

Ag4 -A(bt+2blb3)+g4(4bl +b3)+2blbz=0.  (W 

These equations may be called the b,, b3, and g4 equations respectively, corresponding 
to the three choices of C, from which they were obtained. They are readily solved 
in practice by a simple iterative method which also works satisfactorily for the higher 
approximations. This particular LSUB4 approximation was also considered for the case 
A = 1 in the pioneering paper of Roger and Hetherington (1990). 

In the UUBS approximation the four equations are 

- 1 + 2Ab1 - 29, - 2 fo134 + 3bf - 2616, - 26: = 0 

4Ab3 - g4 - b: + 4b1b3 = 0 

Ag4 - Ab1(b1 + 2b3) + g4(4'J1 -C. b3) + f 0 1 3 4 ( h  - 4) + 261b; = 0 

2Af0134 - 2Ab; + 94(&1  t 63) 4- 461f0134 + 2b:bS 

(124 

(1%) 

(12)  

(124 0 

while for the LSUB6 approximation the nine equations are given in appendix 1. 
It is clear that both the number of equations in the L s u ~ n  approximation scheme 

and the number of terms in each equation increase rapidly as n increases. Although 
the equations for n < 4 were obtained directly, an algebraic computational method 
is required for larger n. This uses exactly the Same method as in the direct calcu- 
lation and details are given in appendix 2 Using this we obtained and solved the 
equations for n 6 8 using a desktop computer, and we note that it should be quite 
straightforward to go to at least n = 10 using more powerful computers. 
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3. Results for the ground-state energy 

In table 1 we give the values of Ep/,N for various values of A for the LSUBn 
approximations with n < 8, together wth perturbation theory results and the exact 
results. We note that the U U B n  results for even n form a sequence that appears 
to converge monotonically to the exact result, for A 2 0. The odd values give a 
sequence that also converges for approximately the Same range of A, but that is 
not as accurate as the even-n sequence for low values of n. We believe that this 
is a combinatorial effect as discussed in the previous section. We also note that the 
UUBn numerical results for the odd values n = 3, 5, 7 tie everywhere above the 
exact result. We have been unable to prove that the odd values give an upper bound 
in general. Nevertheless, the observed difference between the odd-n and even-n 
sequences suggests that some such general result may be true. 

R F Bishop et a1 

Table 1. Gmund-state energy per spin as a function of anisotropy A. P T ~  is lhe m u l t  
of perburbation Iheory IO order A-*+', whereas L S U B ~  repmenls he w e n t  results. 

. .  
A 

Method 0.0 a5 1.0 1.5 2.0 5.0 
,,,, ,, ,, , ., , , . , , ,, 

LSUBZ - a m 7  -0.3412 -0.4167 -a5069 -0.6076 -1.2986 
LSUBl -a3193 - 0 . ~ ~ 2  -0.4363 -a5195 - 0 . 6 1 s  - 1 . m 5  
LSUBI -a3078 -0.338 -0.4339 -05185 -0.6151 -I.ZW 
LSUB6 -a3198 - 0 . 3 7 ~  -0.44~) - m i 8  -0.6167 -1.2995 
LSUB7 - m i x  -a3694 -a4385 -0.~213 -0.6165 -1.2995 
LSUW -a3196 -a3741 -a4414 -as226 -0.6170 -I.ZWS 
m -a6250 - a m  -as41+1 -0.6250 -ima 
FTI - 0 . 1 ~ 0  -0.4375 -a5232 -0.6172 -1.299s 
m6 - 0 . 1 ~ 0  -0.4375 -a5232 - 0 . 6 1 ~  - 1 m 5  
m -0.6~0 -0.4414 -0 .57s  - 0 . 6 1 ~  - 1 . 2 ~ s  
Exact -0.3183 -a3750 -a4432 - 0 . 5 ~ 4  - 0 . 6 1 ~  -1.299s 

Comparing the LSmn results with nth-order perturbation theory (i.e. up to terms 
of order A-.+') we see that L S U B ~  produces good results for 0 5 A < 1 where the 
perturbation sequence in inverse powers of A obviously fails. However, for A 2 1 
the U U B ~  results are not quite as good as the corresponding results from nth-order 
perturbation theory, although they clearly converge to the correct result. Nevertheless 
this observation is somewhat misleading as we show in the next section that the L S U B ~  
approximation identically reproduces the large-A perturbation theory series out to 
terms of order A-.+'. 

Our LSUBn approximation scheme does very much better than perturbation the- 
ory for smaller A, where the latter starts to diverge, because it includes physically 
important contributions from alf orders in A-'. We believe the reason it is marginally 
worse for A 2 1 is a consequence of the abnormally small values of the coefficients 
in the perturbation series (Walker 1959). Errors in the coefficients of terms that are 
higher order than A-"+' have a larger effect than might be expected since they 
cannot reproduce the almost perfect cancellation that leads to the very small actual 
values of these coefficients. 

In figure 2 we plot the ground-state energy per spin as a function of A for 
the mrious LSUBIX approximations considered. The sequence breaks up in a non- 
uniform manner for A $ 0, in a way that is rather reminiscent of the break-up of 
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the perturbation sequence for A 5 1 (see also figure 3). Nevertheless it appears that 
the method is reliable and accurate for all positive A and consequently should be 
applicable over this range to non-integrable systems such as w) s = 4 models and 
1~ s > 1 models. Indeed it appears to be converging satisfactorily even for negative 
A 2 -0.5. 

A 

Figure Z Gmund-state energy per Spin for the 
w X X Z  model with 9 = I as a function of A 
showing lhe exact mul l ,  and results for the LSUBn 
approximalion schemes with n = 2, 3, 4, 5,  6, 7, 
8. Note that LSUB~ is identical U) W B 2 .  We also 
s h w  Rsults of the SUB2 scheme described in I and 
It. 

2 

0 as 1.0 1 5  
A 

Figure 3. Comparison of the gmund-state m e w  
per spin calculated using W B n  and using mn for 
n = 2, 4, 6, 8. mn is n l h a d e r  perturbation 
theory, i.e. up to terms of order A-nt'. Note 
that the N k l  mull is ~m and that the awe for 
111 lies outside the ranges of this figure. Also note 
that m4 and m6 are identical, since the term of 
order A-5 has zem meficienr 

It is interesting to note that exact results on the asymptotic behaviour of the 
spin-spin correlation function gIL = (ufuf+,) of the integrable model given by (1) 
have recently been obtained using the quantum inverse scattering method (QlSM) by 
Bogoliubov et a1 (1986). For lAl < 1 these show a different behaviour for positive 
and negative A. Over the range 0 < A < 1 the asymptotic form alternates in sign 
(antiferromagnetic behaviour) but decays algebraically as (-l)"ne with a power B 
in the range -2 < 6 < -1. For A in the range -1 < A < 0 the asymptotic form 
does not alternate in sign (ferromagnetic behaviour) but decays algebraically as n-'. 
The significance of this subtle change at A = 0 is not very clear at present but it 
is possible that a model state rather different from the antiferromagnetic Nee1 state 
might be more appropriate for the range -1 < A < 0. 

Finally in this section we relate the LSUBn results given here to earlier results 
we obtained in I and 11 using the SUBZ and SUBZ+g, approximations. In the SUBZ 
approximation scheme all coefficients of terms involving two spin Rips are retained 
and aU other coefficients set equal to 0. The SUB2+g4 scheme is the same except 



~ 

5790 

that one additional coefficient, g4, is also retained. In these earlier approximations 
we found strong evidence for a phase transition at A = A, where A, had the value 
0.373 for the former and 0.412 for the latter. After considering the behaviour of the 
sublattice magnetization, the correlation functions, and the excited-state energies, as 
well as the groundatate energy, we argued that this phase transition corresponds to 
the A = 1 phase transition at which the model becomes mitical, even though the 
actual wlue of A, is not very close to the exact value of 1. On the other hand, our 
LSUBn results appear to @ve accurate numerical values for E J N  for much lower 
values of A. 

The essential difference between the LSUBn results and the earlier ones is that 
the LSUBn approximation is designed to handle local contributions to the correla- 
tion of the wave function in some detail. The CCM then automatically constructs 
longer-range contributions in a systematic but approximate way &om these short- 
range contributions. Conversely, in the SUB2 and SUBZ+g4 approximations the most 
important long-range contributions are aplicilry incorporated but these approxima- 
tions only include the simplest short-range contributions. Our results suggest that 
numerically accurate results require detailed consideration of the short-range terms 
but that, as expected, a true phase change requires the presence of long-range terms 
explicitly. It is interesting to observe that the a 2 M  is capable of handling these two 
very different requirements by means of different approximation schemes. Naturally, 
an ideal scheme would be one that incorporates both aspects simultaneously and this 
does at least indicate the direction in which further progress should be sought. 

R F Bishop et a1 

4. barge-A limit 

In this section we show that the LSUBn approximation includes exactly all contri- 
butions to the goundatate energy up to order A-nt1. Fmtly we note that it is 
completely straightforward to show directly from (lla)-(llc) that the three config- 
uration coefficients retained at the Lsu~4 level of approximation have the following 
asymptotic behaviour in the large-A (Ising) limit: 

The pound-state energy in this approximation is thus given from (8) as 

A-.- + -LA 4 - LA-' 4 + + O(A-5)  B U M .  (14) 

To the accuracy quoted, this LSUB4 result agrees with the exact resuli, 

(15) E,/N - -LA - LA-' + &Am3 - -?-A-7 - + . , . 4 4 256 A-W 

obtained by Mlker (1959) from the exact solution of Orbach (1958). 
Naturally, the Same level of accuracy quoted in (14) also arises from a fourth-order 

perturbation theory calculation taking the Ising limit as the unperturbed Hamiltonian, 
Le. by writing (2) as 

7i = A(?& + A-"HH,) (16) 
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with '?lo the king part and 7i1  the XY part. We note that the form of the Hamil- 
tonian clearly indicates that only even powers of 7.1, contribute to the ground-state 
energy perturbation series. 

It is particularly interesting to note that within the LSUB4 approximation only 
the two configurations with coefficients b, and g4 actually contribute to the O(A-,) 
term in the large-A ground-state energy expansion. That is, the configuration with 
coefficient b3 only contributes to the ground-state energy at the O(A-,) level, for 
which the U U B ~  approximation is not exact. We note that this is so despite the fact 
that b, itself has a leading-order behaviour of O(A-3). However, it is not ditlicult 
to understand why this is the case, since the repeated action of the perturbative XY 
part 7.1, of the Hamiltonian on the model Ndel state (which is the ground state of the 
King part 7f0)  in our rotated Nee1 basis is either to create or destroy two adjacent up 
spins. Thus, to create the configuration with coefficient b, shown in figure 1 requires 
the action of 7.1, on the N6el state at least three times. Hence it is clear that the b3 
configuration can only contribute to the RayleighSchrodinger perturbation series for 
the ground-state energy at sixth or higher orders. 

We also note that there is an infinite sequence of terms that contribute to fourth- 
order perturbation theory. These arise from intermediate configurations (in the usual 
perturbation sense) involving two pairs of adjacent spin flips with respect to the Ndel 
state, produced by 'HI acting twice, and which are an arbitrary non-zero distance apart 
(Le., other than the compact four-spin-flip cluster described by g4, which has a differ- 
ent energy eigenvalue with respect to the unperturbed X0). In our CCM description, 
these are described as two independent nearest-neighbour spin-flip configurations, 
each described by the coefficient b,. We recall (see also Bishop and Kijmmel 1987) 
that the exponential form of the wave function in (3), which lies at the heart of the 
a, is arrived at precisely by such a counting with the correct statistical weight of 
configurations with multiple numbers of independenl sub-configurations. 

A similar inspection of the nine configurations that contribute to the LSUB6 ap- 
proximation shows that those described by the coefficients b,, fo125 and fozas can 
only contribute to the ground-state energy perturbation series at the tenth, eighth and 
twelfth orders at the lowest, respectively. A detailed calculation based on the nine 
coupled L F U B ~  equations given in appendix 1 confirms that this approximation now 
gives identical results to the sixth-order perturbation theory, i.e., to confirm the LSUM 
result of (14), together with the additional result that the coefficient of the A-' term 
is zero, as in (17). The analysis further confirms that only the six configurations with 
coefficients b,, b,, g4, fo134, f0145, and g6 actually contribute to the large-A result 
out to the (now cxact) icrm of order A-,. These configurations are the only ones 
that can be generated by acting upon the Ndel state with E, three or fewer times. 

We have also confirmed explicitly by a rather lengthy calculation that the LSUB8 
approximation gives identical results to eight-order perturbation theory, ie., out to 
terms of order A-' in (15). Once again, the detailed calculation shows that of the 
26 configurations contributing to the LSUBS approximation shown in figure 1, only the 
12 described by coefficients bi, b,, 9 4 7  fo134, foim f0145, 96, fo156, fo12356, fol6n 
fo12367, and ga actually contribute to this order. The remaining 14 only contribute m 
higher orders. 

Although we have not attempted to construct a rigorous proof, it is clear that 
similar arguments will be valid at any value of the truncation index n. Hence we 

,conclude that the U U B n  approximation for general values of n reproduces exactly 
the results of nth-order perturbation theory. 
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A detailed comparison of the L s U B ~  results for the ground-state energy with the 
corresponding results from nth-order perturbation theory (PTn) which include terms 
in (15) up to O(A-*+'), is shown in figure 3 for even values of n < 8. It is clear that 
for a given value of n the L S U B ~  results are accurate to considerably lower values 
of A than the corresponding F T ~  results. In particular, the range of validity of the 
LSUBn results certainly extends well below A = 1 which is a natural boundary for 
the PTn results, and even to below A = 0 which is the lowest possible boundary for 
large-A perturbation theory. 

The U U B ~  approximation thus represents a natural extension of the P T ~  approxi- 
mation. It comprises, in effect, a well defined analytic continuation or resummation of 
the PTn results, within the context of a systematic hierarchy of approximations. In this 
sense it may be contrasted with alternative rather ad hoc approaches for extending 
the range of validity or the accuracy of similar FTn sequences such as, for example, 
Pad6 approximants, or similar techniques. 

Finally, we may also compare this view of the LSUBn hierarchy of approximations 
as an extension or generalization of perturbation theory with an analogous view of 
it (Bishop el al 1992) as a rather natural sequence of generalizations of antiferro- 
magnetic spin-wave theory (Anderson 1952, Oguchi 1960). Whereas in the present 
case the natural perturbative parameter is A-', in the case of spin-wave theory it is 
(2s)-', where s is the spin quantum number. 

5. Conclusions 

The LSuBn sequence of approximations is clearly a practical method of calculating 
the ground-state energy of quantum spin systems. We have been able to formulate the 
algebraic generation as well as the numerical solution of the coupled non-linear equa- 
tions on a computer. This process could undoubtedly be refined and also extended 
to much more powerful machines. 

Our method is valid over a considerably wider range of parameters than perturba- 
tion theory and although it does not converge quite as rapidly as perturbation theory 
for A > 1, this appears to be due to the rather special form of the perturbation 
series. Its other advantage over perturbation theory is that it can potentially be used 
for calculating other quantities such as correlation functions, sublattice magnetization 
and excited-state energies. 

In the light of these encouraging results we intend to apply the method to non- 
integrable systems in both ID and m. The latter is, of course, of particular interest 
in connection with high-Tc superconductiviry. 
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Appendix 1. The nine coupled non-linear equations for LsL'B6 

Using a similar format to that given in section 2 €or LSUM, the nine coupled equations 
for L S U B ~  are: 
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Appendix 2. Outline of the computational method 

In order to generate the coupled non-linear equations by computer it is useful to 
divide the method into simpler steps as follows. 

~~ In the-ccM we~~need lo calculated f i  for the Hamiltonian of (2) where A 
e - S A e S  for any operator A. Since e - S A B e S  = e - S A e S e - S B e S ,  each term in (2) 
will be the product of two of the operators Er?, 5f. and 5;. In calculating these we 
use the familiar nested commutator expansion: 

R F Bishop e! al 

e-’AeS = A + [ A , S ]  + f [ [ A , S ] , S ]  + .. .. 
Since S contains only ut operators this sequence will terminate after one, two or 

three terms for Er:, Sf, and Er; respectively. Writing pi = [u j ,S] ,  p; = [u;,S], 
and T; = $ [ p ; ,  S], then Er: = U?, E r f  = ut + pi and Err = a; + p; + 7;. 

Now using uric)) = 0, ujI@) = -la)), ujo?l(€~) = UTI@), and (2), we obtain 

gl@) = -+xu?uf+1l@) - (A/4) x(4 + d)(af+i + pi+l)I@) 
I I 

- ~ C ( n ; + p i + ~ ; ) ( u ( + l + ~ ~ + l + ~ ~ l ) I @ )  
I 

I I 

- + cc u;Pr+l + u;TI& + P; P G l  + P; Tr;l+ 7;prt1+ 7; TC1 )I@). 
I 

The 1 = 0 part of each term is then evaluated explicitly. Finally, multiplying on 
the left by (@IC, for the different choices of C, yields the terms in the coupled 
equations. 
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